Parameterized complexity of the induced subgraph problem in directed graphs
نویسندگان
چکیده
In this Letter, we consider the parameterized complexity of the following problem: Given a hereditary property P on digraphs, an input digraph D and a positive integer k, does D have an induced subdigraph on k vertices with property P? We completely characterize hereditary properties for which this induced subgraph problem is W [1]-complete for two classes of directed graphs: general directed graphs and oriented graphs. We also characterize those properties for which the induced subgraph problem is W [1]-complete for general directed graphs but fixed parameter tractable for oriented graphs. These results are among the very few parameterized complexity results on directed graphs. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Understanding the Complexity of Induced Subgraph Isomorphisms
We study left-hand side restrictions of the induced subgraph isomorphism problem: Fixing a class C, for given graphs G ∈ C and arbitrary H we ask for induced subgraphs of H isomorphic to G. For the homomorphism problem this kind of restriction has been studied by Grohe and Dalmau, Kolaitis and Vardi for the decision problem and by Dalmau and Jonsson for its counting variant. We give a dichotomy...
متن کاملLong Circuits and Large Euler Subgraphs
An undirected graph is Eulerian if it is connected and all its vertices are of even degree. Similarly, a directed graph is Eulerian, if for each vertex its in-degree is equal to its out-degree. It is well known that Eulerian graphs can be recognized in polynomial time while the problems of finding a maximum Eulerian subgraph or a maximum induced Eulerian subgraph are NP-hard. In this paper, we ...
متن کاملParameterized Complexity of the Anchored k-Core Problem for Directed Graphs
We consider the Directed Anchored k-Core problem, where the task is for a given directed graph G and integers b, k and p, to find an induced subgraph H with at least p vertices (the core) such that all but at most b vertices (the anchors) of H have in-degree at least k. For undirected graphs, this problem was introduced by Bhawalkar, Kleinberg, Lewi, Roughgarden, and Sharma [ICALP 2012]. We und...
متن کاملOn the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism
Maximum Common Induced Subgraph (henceforth MCIS) is among the most studied classical NP-hard problems. MCIS remains NP-hard on many graph classes including bipartite graphs, planar graphs and k-trees. Little is known, however, about the parameterized complexity of the problem. When parameterized by the vertex cover number of the input graphs, the problem was recently shown to be fixed-paramete...
متن کاملOn parameterized complexity of the Multi-MCS problem
We introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by various biological applications such as multiple alignments of gene sequences, protein structures, metabolic pathways, or protein–protein interaction networks. MultiMCS is a generalization of the two-graph Maximum Common Subgraph problem (MCS). On the basis of the framework of parameterized complexity t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 104 شماره
صفحات -
تاریخ انتشار 2007